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Abstract
Molecular dynamics simulations are carried out in order to develop a failure 
criterion for infinite/bulk graphene in biaxial tension. Stresses along the 
principal edge configurations of graphene (i.e. armchair and zigzag directions) 
are normalized to the corresponding uniaxial ultimate strength values. The 
combinations of normalized stresses resulting in the failure of graphene are 
used to define failure envelopes (limiting stress ratio surfaces). Results indicate 
that a bilinear failure envelope can be used to represent the tensile strength of 
graphene in biaxial loading at different temperatures with reasonable accuracy. 
A circular failure envelope is also introduced for practical applications. Both 
failure envelopes define temperature-independent upper limits for the feasible 
combinations of normalized stresses for a graphene sheet in biaxial loading. 
Predicted failure modes of graphene under biaxial loading are also shown and 
discussed.

Keywords: graphene, biaxial tension, hyperelastic materials, molecular 
dynamics, failure envelopes

(Some figures may appear in colour only in the online journal)

1.  Introduction

Graphene is a monatomic thick sheet of sp2-hybridized carbon. Its extended hexagonal lat-
tice is the motif of carbon allotropes (i.e. graphite (3D), nanotubes (1D) and fullerenes (0D) 
[1]). Since its discovery [2] (or more accurately, isolation), graphene has allured academic 
and industrial interest owing to its exceptional electronic [3], optical [4], thermal [5] and 
mechanical properties. As a lightweight material but the strongest and stiffest ever known in 
the universe [6], graphene holds promise as a reinforcing agent for composite materials [7]. 
In addition, the unique attribute of graphene in generating enormous strain-induced pseudo-
magnetic fields opens the door for its application in nanoelectromechanical systems [8, 9].
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The exceptional mechanical properties of graphene have been consistently corroborated 
via first-principles (i.e. ab initio) calculations, semiempirical methods, laboratory experiments 
and numerical simulations. By means of first-principles calculations, Konstantinova et al [10] 
reported a Young’s modulus of 1.24   ±   0.01 TPa for graphene. Using the density functional 
perturbation theory, Liu et al [11] calculated the graphene’s Young’s modulus and Poisson’s 
ratio as 1.05 TPa and 0.186, respectively. The strengths of 121 and 110 GPa in the zigzag (ZZ) 
and armchair (AC) directions, respectively, were also reported for graphene [11]. In addi-
tion, by nanoindenting the center of a free-standing graphene membrane in an atomic force 
microscope, Lee et al [12] measured the strength and Young’s modulus of graphene to be 
130   ±   10 GPa and 1 TPa, respectively (the corresponding values for the structural steel are 
0.36 GPa and 0.21 TPa, respectively).

Due to its exceedingly small dimensions, it is challenging to pinpoint the properties of 
graphene via laboratory experiments. First-principles calculations are also computationally 
intensive. Alternatively, experimentally validated molecular dynamics (MD) simulations have 
provided researchers with a virtual laboratory to probe the what-if scenarios that would oth-
erwise be difficult (if not impossible) to investigate in the laboratory. MD simulations have 
shown that graphene exhibits an orthotropic behavior with different ultimate strength val-
ues along the zigzag and armchair directions [13]. MD simulations have also demonstrated 
that the mechanical response of graphene nanoribbons (GNRs) is nonlinear elastic and their 
size and chirality have significant influences on their mechanical properties [13]. It has been 
reported that 8 nm constitutes a critical width for GNRs beyond which the size effect largely 
disappears and their elastic properties converge to the values for bulk/infinite graphene [13, 
14]. In addition, MD simulations have shown that while the Young’s modulus of graphene 
remains fairly insensitive to the temperature up to 1200 K, the values of its failure strength 
and strain undergo a steady fall as temperature is increased from the absolute zero [15, 16].

In spite of a fairly considerable number of MD studies on the mechanical properties of 
graphene, to the best of the authors’ knowledge, the behavior of graphene in biaxial loading 
has been the subject of only a few analytical studies. Marianetti and Yevick [17] used the den-
sity functional theory to investigate the failure mechanism of graphene under a generic state 
of tension (including biaxial tension) at absolute zero temperature. They concluded that the 
uniaxial failure of graphene is caused by elastic instability while graphene maintains its sym-
metrical structure. However, a soft-mode phonon instability, where the phonon frequency for 
some wavevectors vanishes, promotes failure in graphene when subjected to equi-biaxial ten-
sion. These findings are merely applicable to low temperatures where all atomic motions in a 
crystal can be decomposed into phonon-independent modes [11]. Volokh [18] and Tuleubekov 
et al [19] used a combination of continuum and molecular mechanics to study the behavior of 
graphene in biaxial loading. In both of the latter studies, graphene was decomposed into two 
simple Bravais lattices in order to tailor it to the continuum mechanics framework. None of the 
studies mentioned above reported a closed-form failure criterion for graphene. Furthermore, 
due to the limitations of the methods employed (i.e. continuum and molecular mechanics), the 
influence of temperature on the biaxial strength of graphene was not considered.

This paper reports a series of MD simulations which were carried out on defect-free infinite 
graphene models in order to develop a simple failure criterion for graphene in biaxial loading. 
Whether failure criteria should be expressed in terms of stress or strain has been a longstand-
ing issue dating back to the emergence of the theory of materials failure. Although discussions 
on the subject remain inconclusive, it is supposed that characterizing failure criteria in terms 
of stress is more compatible with the physics of failure (e.g. dislocation dynamics in the duc-
tile range) [20]. In this paper, and in the supporting studies upon which it is based, stress is 
taken as the fundamental form to express the failure of graphene. In this regard, the simulation 
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cases investigated in this paper were different from one another with respect to the applied 
transverse stress magnitudes. The influences of temperature and strain rate were also studied. 
The findings of this study can help to improve the design, reliability and functionality of the 
nanoscale devices made from graphene and provide a fairly simple computational tool to 
study the mechanical response of graphene to tensile loading. Investigation on the detrimental 
impacts of defects and imperfections in graphene on its performance and failure in biaxial 
loading is reserved for a future study.

2.  Molecular dynamics simulations

All the simulations in this study were carried out using the MD package LAMMPS [21]. 
Details of the simulations are described in the following sections.

2.1.  Simulation models

Simulations were carried out on a 82.95 Å  ×  82.28 Å (zigzag  ×  armchair) monolayer gra-
phene sheet consisting of 2720 carbon (C) atoms with an equilibrium bond length of 1.42 Å 
and a bond angle of 120°. The sheet was considered adequately large (width  >  80 Å [14]) to 
avoid the finite-size effects and to represent infinite graphene. Periodic boundary conditions 
were applied at all four edges in order to simulate the infinite dimensions of the sheet, further 
minimize the size effects, eliminate the effects of free edges on the mechanical properties of 
graphene and finally, guarantee constant strain in the desired loading direction.

2.2.  Interatomic potential

The adaptive intermolecular reactive empirical bond-order (AIREBO [22]) potential and the 
corresponding parameters were used to define the interactions between carbon atoms in gra-
phene. The AIREBO potential has been shown to accurately capture the bond interaction, 
bond rupture and bond reformation between carbon and hydrogen atoms in the MD studies 
on carbonaceous and hydrocarbon systems [13, 23]. In the original version of the potential, a 
three-step function was proposed to specify the interaction between nearest-neighbor carbon 
atoms. In this function, two bonded carbon atoms fully interact with one another as long as 
their bond length is below 1.7 Å. When the C–C bond length exceeds 1.7 Å, a cutoff function is 
actuated in order to attenuate the interaction between the adjacent carbon atoms until the bond 
length reaches 2.0 Å, where the interaction is terminated and the bond ruptures. The three-step 
cutoff function, however, generates spurious bond forces near the cutoff distance, especially at 
low temperatures, due to a discontinuity in its second derivative [14]. Consequently, graphene 
exhibits a non-physical strain hardening behavior at a C–C bond length of 2.0 Å [24, 25]. In 
this study, as proposed by several researchers (e.g. [24]), the intermediate step of the function 
(1.7 Å  <  bond length  <  2.0 Å) was omitted by setting both its lower and upper limits to 2.0 Å. 
This ad hoc approach solved the aforementioned cutoff problem while it preserved the ability 
to describe bond breaking and the nearest-neighbor character of interactions.

It should be noted that the cutoff function in the AIREBO potential is restricted to bond 
breaking and rehybridization and cannot be used to quantify bond reformation in carbona-
ceous materials. However, ruptured bonds are generally unlikely to reform in fractured gra-
phene unless the stress that causes a bond to stretch is significantly reduced or completely 
removed. In this case, other potentials (e.g. spontaneous thermal fluctuations) could bring a 
pair of atoms that are connected by a bond closer to each other than their breaking distance 
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and thereby reform their bond [26]. In addition, the studies on defective graphene have con-
sistently shown that its ultimate strength is proportionally lower as a function of the defect 
coverage up to approximately 7–10% and levels off to the strength of a highly defective gra-
phene for more extensive defects [27]. Therefore, it is expected that randomly distributed 
bond reformations (if any) will not considerably change the ultimate strength of graphene. 
However, bond reformation might significantly increase the magnitude of strain at failure and, 
consequently, improve the ductility of graphene, giving another justification for expressing the 
failure criterion in terms of stress in this study.

2.3.  Calculation of stresses and strains

A great number of approaches have thus far been proposed to define the stress tensor in atom-
istic mechanics, and many relationships have been developed to bridge the atomistic stresses 
to the macroscopic quantities in continua. In this study, the virial stress (also known as local 
atomic level stress or total stress) was used to calculate the atomistic stresses due to its simple 
form and ease of calculations. By definition, each virial stress component per unit volume 
within the graphene sheet is the aggregate of the corresponding stresses over all carbon atoms 
(each denoted by α) in the sheet and is calculated as [28, 29]:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑σ υ υ=

Ω
−

α β

αβ αβ α α α

=

r f m
1 1

2
,ij

N

i j i j
1

� (1)

where i and j (which can take x, y and z) denote direction of the normal to the stress plane and 
the corresponding traction applied, respectively; β is an atom index running from 1 to N; N is 
the number of neighboring atoms for atom α; αβri  is the distance between atoms α and β along 

the ith direction; αβf j  is the force along the jth direction on atom α due to atom β; mα is the 
mass of atom α; υ α

i  and υα
j  are the components of the thermal excitation velocity of atom α;  

Ω is the total volume of graphene, assuming a thickness of 3.35 Å.
It should be noted that the first term on the right-hand side of equation (1), known as the 

potential term, takes into account the interatomic forces acting on an arbitrary plane, while 
the second, known as the kinetic term, considers the momentum flux intercepted by it [28]. 
Whether or not including the kinetic term in the virial expression yields atomistic stresses 
analogous to those measured by the Cauchy expression on a continuum scale has been a con-
tentious topic in the literature. Premising on the fact that the stress in the Cauchy definition 
is stated solely in terms of the internal mechanical forces between different points in a body, 
Zhou [30] asserted that the contribution of the kinetic term to the stress tensor is at odds with 
the Cauchy definition and provided some examples to demonstrate that the two expressions 
are not equivalent. Some researchers adopted this notion and tried to derive new atomistic 
stress definitions equivalent to the Cauchy stress (e.g. see [31]). However, for a material such 
as graphene, the application of the continuum mechanics principles to measure its stresses 
typically leads to a residual stress at zero strain, particularly at elevated temperatures, which 
can be eliminated by using the virial stress (i.e. excluding the contribution of kinetic energy) 
[16]. The interested reader is referred to [25] for further details.

For practical applications, the engineering (nominal) strain, defined as the elongation rela-
tive to the original length, was used to calculate the elastic properties of graphene and to plot 
its stress–strain response [32]. The ultimate stress (σu) and strain (εu) values used in the analy-
sis correspond to the point at the peak of the stress–strain plot.
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2.4.  Simulation sequence

In the simulations that were carried out in this study, the initial structure of each infinite 
graphene model was subjected to an equilibration sequence as described below to relax any 
high energy configurations. A time step of 0.5 fs (0.5   ×   10−15 s) was used in all simulations, 
in accordance with related previous studies (e.g. [33]). Five temperatures of 1, 300, 500, 1000 
and 1500 K were examined. For each temperature, the simulation initially ran for 40 ps (80 000 
time steps) using NPT (isothermal–isobaric) ensemble at a temperature 200 K greater than 
the desired temperature and zero pressure components along the in-plane directions followed 
by relaxation for 30 ps at that temperature. The Nosé–Hoover thermostat and barostat were 
employed to control temperature and pressure, respectively. The subsequent relaxation cooled 
the structure down to the desired temperature over a period of 40 ps maintaining the pressure 
components at zero. Eventually, the structure was further relaxed for 30 ps at the desired tem-
perature. The potential energy history of the sheet was observed to ensure negligible energy 
drift at the end of each stage. In addition, the microstructure of the sheet was frequently visual-
ized in order to ensure that it was appropriate for deformation simulations.

Three loading régimes which were different in their sequence of loading along the zigzag 
and armchair directions were used to investigate the behavior of graphene in biaxial tension. In 
régime I, the boundaries of the sheet were first decoupled from the NPT equations of motion 
[34]. Subsequently, the sheet was elongated at a constant strain rate using NVT (canonical) 
ensemble along the zigzag direction until a certain level of stress along that direction was 
mobilized. Next, the strain along the zigzag direction was held constant and the sheet was 
stretched along its armchair direction until failure. The second régime (régime II) was used 
in order to test the hypothesis that reversing the sequence of the transverse loadings from zig-
zag–armchair to armchair–zigzag would not significantly change the combination of stresses 
resulting in failure. In this régime, the sheet was first stretched along the armchair direction 
and then elongated to failure along the zigzag direction. Régime III included equi-biaxial 
loading, where the sheet was simultaneously stretched along both directions until failure.

 A strain rate of 0.001 ps was used for all the loading régimes used in this study. Strain rates 
of this order are very common in MD simulations (e.g. see [16, 35]). The experimental strain 
rates, in contrast, are on the order of 1 ms−1 [12, 36]. MD simulations at low strain rates are 
computationally prohibitive for the studies described in this paper, where a great number of 
simulations would be required to obtain meaningful results. The database generated in the pre-
sent study is the result of 330 simulations with different combinations of temperature, loading 
régime and stress magnitudes within the first loading stage for régimes I and II. Considering 
the fact that each simulation in this study took on average 8 min on a supercomputer to com-
plete, selecting a lower strain rate would have exponentially increased the required compu-
tational demand and time, making the study very lengthy, if not impossible. Nevertheless, 
régime III (i.e. equi-biaxial loading) was repeated for two additional strain rates of 10−5 and 
0.1 ps−1 in order to investigate the strain rate-dependent failure properties of graphene in biax-
ial loading, and it was assumed that the results would hold for the other loading régimes.

3.  Results and discussions

The influence of temperature on the ultimate strength of graphene is shown in figure 1. The 
results indicate that the mechanical performance of graphene is temperature-dependent and 
anisotropic (orthotropic) in that its ultimate strength varies in the AC and ZZ directions and 
deteriorates with temperature. In an independent separate simulation, it was observed that the 
graphene sheet completely restored its original configuration after a loading–unloading cycle, 
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which indicated that it was completely elastic even when unloaded from stresses approaching 
failure. This observation together with the typical nonlinear stress–strain response (inset of 
figure 1), which has been attributed to the anharmonic terms of the C–C interatomic potential 
[37], suggest that the mechanical response of graphene prior to failure is nonlinear elastic 
(hyperelastic).

Typical biaxial stress–strain responses of graphene as calculated in this study are shown in 
figure 2. According to figure 2(a), in the staged loading régimes (i.e. régimes I and II), when 
the sheet is stretched from its initial unloaded configuration along a primary direction (either 

zigzag or armchair), stress is developed in both the primary (σp
I) and transverse (σs

I) directions, 
albeit at different rates in order to maintain the equilibrium of the sheet.

During the second stage of loading (i.e. loading to failure), where the primary and sec-
ondary directions are interchanged, the stress along the secondary direction (previously the 
primary direction) initially increases as a result of continued elongation along the primary 
direction. Further elongation along the primary direction lowers the stress along the normal 
direction, possibly due to the reduction in the stiffness of the sheet as it approaches failure. 

Eventually, a combination of stresses along the two mutually orthogonal directions (σp
II and 

σs
II) leads to failure in the sheet. In Régime III (i.e. equi-biaxial loading), the stresses along the 

zigzag and armchair directions increase synchronously until they collectively result in failure 
in the graphene sheet (figure 2(b)).

In presenting the simulation results for failure envelopes of graphene in biaxial loading, 
the failure stress values calculated in each direction (i.e. ZZ and AC) were normalized with 
respect to the corresponding uniaxial ultimate strength values (σu

zz and σu
ac). Hence, the fol-

lowing stress ratios were defined along the zigzag and armchair directions to normalize the 
calculated failure stresses in each direction:

γ σ
σ

= Δ
,zz

zz

u
zz� (2)

Figure 1.  Variations of predicted ultimate strength of graphene in zigzag (ZZ) and 
armchair (AC) directions with temperature subjected to uniaxial loading (strain rate 
= 0.001 ps−1). The inset shows a schematic nonlinear behavior expected for graphene 
based on MD simulations. The data points at each temperature represent the mean 
values over three independent numerical experiments.
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γ σ
σ

= Δ
,ac

ac

u
ac� (3)

where σΔ zz and σΔ ac are defined below for each loading régime (figure 2):
Régime I (zigzag–armchair):

σ σ σ σΔ = Δ Δ = Δ; ,zz
I

ac
II� (4)

régime II (armchair–zigzag):

σ σ σ σΔ = Δ Δ = Δ; ,zz
II

ac
I� (5)

régime III (equi-biaxial):

σ σ σΔ = Δ = Δ .zz ac� (6)

The MD simulation data corresponding to the failure of graphene at different temperatures 
and loading régimes in σΔ ac– σΔ zz space are shown in figure 3. The notation Δσ indicates 

Figure 2.  Typical stress–strain behavior of bulk graphene in (a) staged (régimes I and 
II) and (b) equi- (régime III) biaxial loading.
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incremental virial stress in graphene. Results indicate that the biaxial strength of graphene 
decreases at higher temperatures. Since both σΔ ac and σΔ zz approach the corresponding  
uniaxial ultimate strength values in the absence of the cross-direction loading as given in  
figure 1 (i.e. values at the x- and y-axes in figure 3), the biaxial strength of graphene decreases 
at higher temperatures at the same rate as its uniaxial strength in either direction. For instance, 
the area bound by the data points corresponding to a room temperature of 300 K in figure 3 
is reduced by nearly 50% at an elevated temperature of 1000 K. Consistently stronger per-
formance of graphene at lower temperatures is possibly due to the fact that low temperatures 
obstruct the nucleation of discrete local failures within the graphene structure, thus enabling 
it to withstand larger loads before failure [11, 38]. In addition, a greater C–C bond length at 
higher temperatures due to the thermal fluctuations arising from kinetic energy leads C–C 
bonds to store higher potential energy. Therefore, the initial configuration of the graphene 
sheet stores less strain energy at lower temperatures. According to the total strain energy 
theory (Beltrami–Haigh’s theory), a body subjected to a combined stress state fails when the 
total strain energy exceeds the total strain energy corresponding to simple tension. Therefore, 
the graphene sheet at lower temperatures can accommodate larger stresses and strains before 
failure.

It can also be observed that for any given simulated temperature, the failure stress combina-
tions corresponding to Loading régimes I and II (sequential biaxial loading) are comparable. 
However, those for the loading régime III (simultaneous biaxial loading) indicate a compara-
tively stronger response, especially at lower temperatures. This observation can be explained 
by the counteracting effects of the transverse forces on the changes in the bond angles of the 
sheet. The decrease in the bond angles due to the ZZ stress is partially neutralized by the 
tendency of the AC stress to widen the bond angles, thus minimizing the contribution of bond 
angles in the total strain energy of the sheet. As a result, the capacity of the sheet to store strain 
energy and, therefore, its strength increases.

Theoretical analyses and numerical simulations have identified two distinct modes of fail-
ure for defect-free graphene under a tensile load: brittle cleavage rupture and ductile failure 
by plastic flow instability. Brittle cleavage rupture, which prevails at low temperatures and 
high strain rates, is associated with sudden bond breaking and tearing along the fracture plane, 
leading to the formation of large open-ring structures. In contrast, external conditions such 

Figure 3.  Combinations of biaxial stresses resulting in failure in graphene at different 
temperatures and loading régimes (strain rate = 0.001 ps−1)
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as slow strain rates and high temperatures (greater than 1000 K [39] and below carbon’s sub-
limation point: 3900 K [40]) favor dislocation-induced plastic flow, which is characterized 
by localized bond rotations at a crack tip [41]. At room temperature, defect-free graphene is 
intrinsically brittle, manifested by a catastrophic fracture observed in the nanoindentation of 
free-standing graphene membranes [12]. It is noteworthy that defective graphene (e.g. gra-
phene with randomly distributed vacancies or Stone–Wales defects) exhibits ductility as a 
result of a complicated interplay among crack trap, crack-tip blunting and the structural rear-
rangement around the defects [27].

The failure modes of graphene under the three loading régimes at 0 K are shown in figure 4. 
For the Loading régime I (i.e. staged loading ZZ followed by AC), fracture nucleation occurs 
exclusively at some flaws along the armchair edges where the tensile stress exceeds the C–C 
bond strength (figure 4(a)). An infinitesimal additional strain (i.e. 18.17% versus 18.18%) 
results in the very fast formation and growth of cracks on the plane of maximum principal 
stress (i.e. ZZ direction), leading to brittle cleavage fracture. In contrast, in the loading régime 
II (i.e. staged loading AC followed by ZZ), cracks are initiated at a stochastic flaw at the 
interior lattice and grow at relative angles of 60° or 120°, indicating that failure is aligned 
with the crystallographic directions of graphene (figure 4(b)). Similar to régime I, fracture 
nucleation in régime III occurs at some flaws along the armchair edges (figure 4(c)). Cracks 
initially grow along the crystallographic directions of graphene, but are subsequently deviated 
due to the simultaneously and equally increasing stresses along the AC direction, resulting 
in the branching (splitting) and microscopic tortuosity of cracks. Similar failure modes were 
observed for graphene at room temperature in the numerical simulations carried out in this 
study. It is also noteworthy that the formation of suspended atomic chains immediately before 
failure (figures 4(b) and (c)) is consistent with laboratory observations [42] and first-principles 
calculations [43].

The influence of strain rate on the failure properties of graphene subjected to equi-biaxial 
loading is summarized in table 1. Results clearly show that both the stress and strain at fail-
ure increase with strain rate. However the influence of strain rate is significant only at higher 
temperatures (>~500 K) and is relatively insignificant compared with that due to temperature 
variations. These observations are consistent with those reported in [15, 16].

The data corresponding to the failure of graphene at different temperatures and load-
ing régimes (figure 3) are mapped to the normalized γzz–γac domain and shown in figure 5. 
Inspection of the results shown indicates that the entire ensemble of data points can be approx-
imated with a bilinear curve reasonably well. The bilinear curve has two distinct segments 
on both sides of the 1 : 1 line in figure 5. A best-fit curve was obtained using a least squares 
method in the form of:

γ γ+ =0.2 1,max min� (7)

which defines a simple bilinear failure envelope for graphene where γ γ γ= { }max ,max
zz ac  and 

γ γ γ= { } min ,min
zz ac . Equation (7) is a Bayesian change-point model that can capture the abrupt 

variation in the sequence of the data shown in figure 5 at a change-point of γ γ= = 0.83zz ac  
[44]. The non-smooth behavior evinced by equation  (7) is similar to that of the maximum 
shear stress criterion for yield (Tresca) and could be due to an interplay between ductile flow 
and brittle fracture modes of failure [20]. Since the strain rate was kept the same for all of the 
simulations that were used to develop equation (7), it is assumed that the failure envelop holds 
its shape for other strain rates. However, the uniaxial ultimate strength values corresponding to 
a particular strain rate (see figure 1) must be used to calculate actual applied stresses leading 
to failure in graphene.
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The data and the best-fit bilinear curve shown in the γzz–γac plot of figure  5 represent 
the critical combinations of γzz and γac which would lead to failure in the graphene sheet. 
Therefore, the best fit bilinear curve shown in figure 5 is, by definition, a failure envelope for 
the graphene sheet in biaxial loading.

A second ‘unit-circle’ failure envelope was also obtained for the data shown in figure 5 
analogous to the plasticity models for the prediction of failure in biaxially loaded metal plates 
[45]. The ‘unit-circle’ failure envelope defined as:

γ γ( ) + ( ) = 1zz 2 ac 2� (8)

Figure 4.  Failure modes of graphene at 0 K under loading régimes (a) I, (b) II and (c) 
III.
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provides an appealing, mathematically convenient approximation for the bilinear failure 
envelope that can be used for the back-of-the-envelope calculation of the graphene ultimate 
strength in biaxial loading. However, as can be observed in figure 5, the ‘unit-circle’ fail-
ure envelope is less accurate than the bilinear envelope in capturing the predicted ultimate 
strength data shown in the figure.

4.  Conclusions

MD simulations were carried out in order to develop failure criteria for defect-free, infinite 
graphene tested in biaxial loading at different temperatures. In the MD simulations, a model 
of graphene sheet was biaxially loaded to failure using different sequences of loading in its 
zigzag and armchair principal directions. The predicted biaxial failure stresses in the two 

Table 1.  Strain-rate dependent failure properties of graphene under equi-biaxial 
loading (régime III)

Temp. (K)

Strain Rate (0.001 ps−1)

0.01 1 100

εu  
(%)

σΔ ac  
(GPa)

σΔ zz  
(GPa)

εu  
(%)

σΔ ac  
(GPa)

σΔ zz  
(GPa)

εu  
(%)

σΔ ac  
(GPa)

σΔ zz  
(GPa)

1 20.2 97.5 97.5 20.0 97.3 97.3 22.0 95.2 97.4
300 12.5 79.7 79.8 13.5 82.5 82.8 15.5 86.4 86.6
500 10.1 70.2 70.6 11.0 73.6 73.8 13.5 80.8 81.1
1000 7.6 57.3 56.8 8.0 58.9 58.4 11.0 70.0 67.0
1500 6.6 51.3 49.8 7.0 52.3 51.1 10.5 64.5 64.4

Figure 5.  Biaxial failure envelopes for graphene subjected to different loading régimes
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principal directions were plotted normalized to their receptive uniaxial ultimate strength val-
ues. Bilinear and circular failure envelopes were introduced using a least squares method for 
practical applications. Results showed that the biaxial failure envelopes for graphene in terms 
of actual applied stresses are consistently smaller (indicating reduced strength) at elevated 
temperatures. However, failure envelopes in terms of normalized stresses were found to be 
essentially temperature independent.

The failure criterion proposed in this study is merely valid for defect-free graphene. 
However, the structural defects arising during growth or processing of graphene severely dete-
riorate its mechanical properties. In addition, the potential used in this study (i.e. AIREBO) 
fails to consider bond-reformation. Similar studies on defective graphene using conservative 
potentials (e.g. SED-REBO and SED-REBO-S [46]) are encouraged in order to develop com-
prehensive and more accurate failure criteria.
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